Investigation of Damage Evolution, and Modeling of Residual Stress and Fracture Toughness in the Ti-Al₃Ti Metal Intermetallic Laminate (MIL) Composites

Student: Tiezheng (Eric) Li

Advisor: M.A. Meyers (UCSD) E.A. Olevsky (SDSU)

Acknowledgements

- Professor M.A. Meyers (UCSD)
- Professor E.A. Olevsky (SDSU)
- Committee members
- Professor David J. Benson
- Professor Lea M. Rudee
- Professor Satchi Venkataraman
- JDP program between SDSU and UCSD
- DARPA

Outline

- Introduction
- Research Objective
- Experimental Results
- Theoretical Modeling
- Preliminary Conclusions

Introduction

Intermetallics - Applications

Aerospace structure

Protective shields

Automobile industry

Coatings

Intermetallics

- Advantages:
 - Good high-temperature strength
 - High stiffness
 - □ Good creep resistance
 - High oxidation resistance
- Disadvantages:
 - Low tensile ductility at low temperature
 - Poor fracture resistance

Toughening Intermetallics – Ductile Reinforcement

<u>Challenges in Producing Ductile Reinforced</u> <u>Intermetallic Composites I</u>

- Chemical compatibility
 - To avoid undesirable microstructure and properties
- Environmental resistance
 - Subject to dynamic environment at low/intermediate temperature
- Consolidation and processing

Complete densification

<u>Challenges in Producing Ductile Reinforced</u> <u>Intermetallic Composites II</u>

- Mismatch of thermal expansion coefficients
 - Introduce residual stress during processing and service

Ductile Reinforced Laminate Composites

<u>Ti-Al₃Ti MIL Composites I</u>

Courtesy to Ashishy

<u>Ti-Al₃Ti MIL Composites II</u>

Courtesy to Ashishy

Research Objective

- Investigation of damage evolution in Ti-Al₃Ti metal intermetallic laminate (MIL) composites
- Modeling of residual stress and fracture toughness in Ti-Al₃Ti metal intermetallic laminate (MIL) composites

Optical Microscopy Observation on Untested Ti-Al₃Ti

Typical untested sample

Cracks in Untested Ti-Al₃Ti

Parallel cracks

Perpendicular cracks

45⁰ angled cracks

Optical Microscopy Observation on Untested Ti-Al₃Ti

Micro-defects in Untested Ti-Al₃Ti

Micro-defects along the interface

Micro-defects in Untested Ti-Al₃Ti

Micro-defects along the interface

Micro-defects in Untested Ti-Al₃Ti

Middle line in Al₃Ti layer

Crack Morphology in Untested Ti-Al₃Ti I

<u>Crack Morphology in Untested Ti-Al₃Ti II</u>

crack length (micrometer)

Crack Morphology in Untested Ti-Al₃Ti III

<u>Compression Tests on Pure Al₃Ti I</u>

	Maximum compressive stress of pure Al ₃ Ti (MPa)	Maximum compressive stress of Ti-Al ₃ Ti (35% Ti, perpendicular loading) (MPa)
Dynamic (1000/s)	1285	1300
Quasistatic (0.01/s)	921	1100
Quasistatic (0.0001/s)	890	1000

Compression Tests on Pure Al₃Ti II

Intergranular crack

Transgranular crack

Strain rate has little influences on crack modes.

<u>Compression Tests on Ti-Al₃Ti I</u>

Volume Fraction of Ti- 6-4	Loading Direction to the Laminate Plane	Strain Rate (/s)
14%	Perpendicular	0.0001
14%	Perpendicular	2800
14%	Parallel	0.0001
14%	Parallel	0.01
14%	Parallel	2100
50%	Perpendicular	0.0001
50%	Perpendicular	1300
50%	Perpendicular	2500
50%	Parallel	0.0001

<u>Compression Tests on Ti-Al₃Ti II</u>

effect of volume fraction of titanium

14% Ti

50% Ti

Compression Tests on Ti-Al₃Ti III

effect of the strain rate

 $\varepsilon = 2800 / s$

 $\varepsilon = 0.0001/s$

<u>Compression Tests on Ti-Al₃Ti IV</u>

 $\varepsilon = 2100 / s$

 $\varepsilon = 0.0001/s$

Physical Modeling: Damage Evolution II

Physical Modeling: Damage Evolution III

Without Confinement

Physical Modeling: Damage Evolution IV

Theoretical Modeling

Elastic Properties of Ti-Al₃Ti

Orientation

	Ti	Al ₃ Ti
α (10 ⁻⁶ /°C)	9.5	13

<u>Residual Stress in Ti-Al₃Ti</u>

Calculated residual stress

$$\sigma_{c} = \frac{E_{1}(1-c) \cdot \left[\left(\alpha_{2}-\alpha_{1}\right) \cdot \Delta T\right]}{\left[1+\left(\frac{1-\gamma_{2}}{1-\gamma_{1}} \cdot \frac{E_{1}}{E_{2}}-1\right) \cdot c\right]\left(1-\gamma_{1}\right)}$$

	14%Ti	20%Ti	35%Ti
Calculated residual stress (MPa)	345	327	282
Measured residual stress (MPa)	65.01	32.38	8.29
Measured residual stress (slow cooling) (MPa)	30.79	25.24	10.59

Residual Stress Release Mechanism I:Creep

 \succ <u>Creep</u> known as time-dependent deformation is characterized by Doner-Conrad equation

$$\frac{\varepsilon_{s} kT}{D \mu b} = A \left(\frac{\sigma}{\mu}\right)^{n}$$

- ε_s is the steady-state strain rate
- μ the shear modulus
- D: the diffusion coefficient
- b: the Burgers vector
 - T: the temperature
- k: the Boltzmann's constant

<u>Residual Stress Release Mechanism I:Creep</u> $t=t_i$ Residual stress due to mismatch of thermal expansion coefficients of Ti and Al₃Ti $\sigma_{n_i} = f(\Delta T)$ T₀r Initial residual stress T₁ $\frac{\boldsymbol{\sigma}_{i_{-}i} = \boldsymbol{\sigma}_{r_{-}i-1} + \Delta \boldsymbol{\sigma}_{n_{-}i}}{\Box}$ T_2 Doner-Conrad equation to obtain strain rate Temperature $\overset{\bullet}{\mathcal{E}}_{s_{-i}} = A \cdot \left(\frac{\sigma_{l_{-i}}}{\mu}\right)^n \cdot \frac{D\mu b}{kT}$ N Obtain strain $\varepsilon_{\underline{s}_{\underline{i}}} = \varepsilon_{\underline{s}_{\underline{i}}} \cdot (t_{\underline{i}} - t_{\underline{i}})$ The reduction of stress due to creep in Ti T_{nl} $\Delta \sigma_{i} = E_{\tau i} \cdot \varepsilon_{s_{-i}}$ The residual stress after 0 t₁ t, t₃ t₄ t_n ----creep in Ti Time $\frac{\sigma_{r_i} = \sigma_{i_i} - \Delta \sigma_i}{\Box}$ t= t_

Y

End

Residual Stress Release Mechanism I: Creep in Ti

Residual Stress Release Mechanism I: Creep in Both Ti and Al₃Ti

Residual stress vs temperature

$$\sigma_{c} = \frac{E_{1}(1-c) \cdot \left[\left(\alpha_{2}-\alpha_{1}\right) \cdot \Delta T\right]}{\left[1+\left(\frac{1-\gamma_{2}}{1-\gamma_{1}} \cdot \frac{E_{1}}{E_{2}^{e}}-1\right) \cdot c\right](1-\gamma_{1})}$$
$$E_{2}^{e} = E_{2}\left(a,\frac{s}{a}\right)$$

Salganik model

<u>Residual Stress Release Mechanism:</u> <u>Combining Creep and Crack Propagation</u>

Residual Stress Release Mechanism

Residual Stress Release Mechanism (cont'd)

Fracture Toughness

Preliminary Conclusions

Preliminary Conclusions (Experiments)

- Optical microscopy observations have showed the crack morphology of untested Ti-Al₃Ti MIL composites.
- Quasi-static and dynamic compression tests were conducted on pure Al₃Ti. Transgranular and intergranular cracks were found under SEM. The experiments show the strain rate has little effects on the formation of the two different crack morphologies.
- Compression tests were conducted on the $Ti-Al_3Ti$ MIL composites, and the effects of different loading directions, different strain rates and different volume fraction of titanium on the damage evolution have been assessed.
- Four different damage evolution mechanisms have been identified, including axial splitting, shear localization in Ti layers, crack propagation along the central plane of weakness in Al_3Ti , and delamination at Al_3Ti -Ti interface.

Preliminary Conclusions (Theoretical Modeling)

- The effect of orientation and volume fraction of Ti on the elastic properties of Ti-Al₃Ti has been investigated.
- Residual stress in Ti-Al₃Ti has been evaluated by elastic analysis and two stress relaxation mechanisms.

• The apparent fracture toughness of Ti-Al₃Ti has been evaluated using a weight function method.

Thank you.

Calculations (Lines) and Data from RUS-Measurements (Dots) Elastic Constants for MIL

Volume Fraction of Ti-Al6-V4

