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Introduction




Intermetallics - Applications

“» Aerospace structure
“» Protective shields

“* Automobile industry
% Coatings

% Armor



Intermetallics

* Advantages:
o Good high-temperature strength
o High stiffness
o Good creep resistance

o High oxidation resistance

* Disadvantages:
o Low tensile ductility at low temperature

o Poor fracture resistance



Toughening Intermetallics — Ductile Reinforcement
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Challenges in Producing Ductile Reinforced
Intermetallic Composites 1

* Chemical compatibility

— To avoid undesirable microstructure and
properties

 Environmental resistance

— Subject to dynamic environment at
low/intermediate temperature

* Consolidation and processing

— Complete densification



Challenges in Producing Ductile Reinforced

Intermetallic Composites 11

Mismatch of thermal
expansion coefficients

— Introduce residual stress
during processing and
service
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toughness

Ductile Reinforced Laminate Composites
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Ti-AL,Ti MIL Composites 1
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Ti-AL,Ti MIL Composites 11
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Research Objective

* Investigation of damage evolution in Ti-Al;T1 metal
intermetallic laminate (MIL) composites

* Modeling of residual stress and fracture toughness in
T1-Al;T1 metal intermetallic laminate (MIL)
composites



Experiments




Optical Microscopy Observation on Untested Ti-Al;Ti

Ti

Al Ti =
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Cracks in Untested Ti-Al iT 1

Parallel cracks

Perpendicular cracks 459 angled cracks
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Micro-defects in Untested Ti-AL,Ti

Micro-defects along the interface



Micro-defects in Untested Ti-AL,Ti

Micro-defects along the interface



Micro-defects in Untested Ti-AL,Ti

Middle line in Al;Ti layer



Crack Morphology in Untested Ti-AL;Ti 1
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number of cracks

Crack Morphology in Untested Ti-ALTi 11
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Crack Morphology in Untested Ti-ALTi 111

parallel crack
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Compression Tests on Pure ALTi 1

Maximum Maximum
compressive stress of | compressive stress of
pure Al;T1 (MPa) Ti-AL;T1 (35% Th,
perpendicular loading)
(MPa)
Dynamic 1285 1300
(1000/s)
Quasistatic 921 1100
(0.01/s)
Quasistatic 890 1000

(0.0001/s)




Compression Tests on Pure ALTi 11

Intergranular crack Transgranular crack

Strain rate has little influences on crack modes.



Compression Tests on Ti-ALTi 1

Volume Fraction of Ti-

Loading Direction to

Strain Rate (/s)

6-4 the Laminate Plane
14% Perpendicular 0.0001
14% Perpendicular 2800
14% Parallel 0.0001
14% Parallel 0.01
14% Parallel 2100
50% Perpendicular 0.0001
50% Perpendicular 1300
50% Perpendicular 2500
50% Parallel 0.0001




Compression Tests on Ti-ALTi 11

effect of volume fraction of titanium

14% Ti 50% Ti




Compression Tests on Ti-ALTi 111

effect of the strain rate

£ =2800 /s £=0.0001/s




Compression Tests on Ti-ALTi IV
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Physical Modeling: Damage Evolution 1
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Physical Modeling: Damage Evolution I1
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Physical Modeling: Damage Evolution 111
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Physical Modeling: Damage Evolution IV
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Theoretical Modeling




Elastic Properties of Ti-Al;Ti
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Residual Stress in Ti-Al iT I
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Residual Stress in Ti-Al iT l

_ El(l_c)'[(az_al)'AT]
Calculated residual stress ¢~ { l—v E
1+[ /2

\—r, E, _1)%(1—71)

14%T] 20%T] 395%T]

Calculated residual 345 327 282

stress (MPa)

Measured residual 65.01 32.38 8.29

stress (MPa)

Measured residual 30.79 25 24 10.59

stress (slow
cooling) (MPa)




Residual Stress Release Mechanism I:Creep

»Creep known as time-dependent deformation is
characterized by Doner-Conrad equation

g.skT y o\
D ub U

¢. is the steady-state strain rate
K the shear modulus
D: the diffusion coefficient

b: the Burgers vector

T: the temperature

k: the Boltzmann's constant
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Residual Stress Release Mechanism I: Creep in Ti
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Residual Stress Release Mechanism I: Creep in Both Ti and AL;Ti

Residual stress vs temperature
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Residual Stress Release Mechanism I1:Crack Propagation
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Residual Stress Release Mechanism I1:Crack Propagation

(Griffith criterion)

Spring model
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Residual Stress Release Mechanism I1:Crack Propagation

Salganik model
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Residual Stress Release Mechanism I1:Crack Propagation
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Residual Stress Release Mechanism:
Combining Creep and Crack Propagation
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Residual stress (MPa)

Residual Stress Release Mechanism (cont’d)
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Fracture Toughness

Stress intensity was evaluated as
Apparent fracture toughness of Ti- a function of volume fraction of

Al Ti MIL composite can be Ti:
calculated from
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Preliminary Conclusions




Preliminary Conclusions (Experiments)

Optical microscopy observations have showed the crack
morphology of untested T1-Al;T1 MIL composites.

Quasi-static and dynamic compression tests were conducted on
pure Al;T1. Transgranular and intergranular cracks were found
under SEM. The experiments show the strain rate has little
effects on the formation of the two different crack morphologies.

Compression tests were conducted on the Ti-Al;T1 MIL
composites, and the effects of different loading directions,
different strain rates and different volume fraction of titanium
on the damage evolution have been assessed.

Four different damage evolution mechanisms have been
identified, including axial splitting, shear localization in Ti
layers, crack propagation along the central plane of weakness 1n
Al;T1, and delamination at Al;T1-Ti interface.



Preliminary Conclusions (Theoretical Modeling)

= The effect of orientation and volume fraction
of T1 on the elastic properties of Ti1-Al;T1 has
been 1investigated.

"Residual stress in Ti-Al;T1 has been evaluated
by elastic analysis and two stress relaxation
mechanismes.

= The apparent fracture toughness of Ti-Al;Ti
has been evaluated using a weight function
method.
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Calculations (Lines) and Data from RUS-Measurements (Dots)

Young's Modulus E., and E,, [GPa]

Shear Modulus G,, and G,, [GPa]

240
220
200
180
160
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100
80
60
40
20

Elastic Constants for MIL

0.2 0.4 0.6 0.8
Volume Fraction of Ti-Al6-\/4

1.0

0.34
0.32
0.30
0.28
0.26
0.24
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0.20
0.18
0.16

Poissons's Ratio v,, and v,,



Young's Modulus E,, and E,, [GPa]
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182

Rotation Angle

0.280

r 0.275
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